目前在ADAS/自动驾驶领域,摄像头(机器视觉)和毫米波雷达技术已经得到了广泛的使用,而新兴的激光雷达(LiDAR)技术得益于其可以提供360°的高精度的3D深度图特性,也得到了不少自动驾驶技术厂商的追捧。
不过在今天特斯拉的“自动驾驶日”活动上,特斯拉CEO埃隆·马斯克(Elon Musk)语出惊人的表示:“任何使用激光雷达的自动驾驶公司注定失败(doomed)”。
目前在自动驾驶领域,主要有三大流派,一派是以Mobileye为代表的主要依靠摄像头来实现自动驾驶的厂商,另一派是以激光雷达为主要感知技术的自动驾驶厂商,还有一派则是多种技术融合使用。而特斯拉则主要采用摄像头技术,外加毫米波雷达技术辅助。
而由于摄像头数量众多,而且要保证足够的分辨率,这也使得需要快速处理的视频流非常的庞大,这也自动驾驶芯片的计算力带来了极大的挑战。而此次性能强大的特斯拉自研自动驾驶AI芯片的成功量产推出,也给了马斯克极大的信心。
在现场投资人提问环节,有投资人就提及了激光雷达的优势,以及在雨雪天气,路况不好时,摄像头如何避免精度不高的问题。
对此,马斯克的回答是,虽然雨雪天的确会增加驾驶难度,比如路牌被雪遮住一部分,但人类通过视觉能做出判断,并且相对安全地驾驶,那么经过大量充分训练的神经网络同样也可以做到,并非一定要靠 Lidar。
用马斯克的话说,“(在汽车上放)激光雷达就是一个傻瓜”(a fools errand),甚至在发布会上发狠话说,自动驾驶行业谁寄希望于 Lidar、谁就注定失败(doomed)!因为激光雷达昂贵、不必要,也很荒谬,注定要让人失望。
特斯拉人工智能和自动驾驶视觉总监 Andrej Karpathy也表示,特斯拉能够处理来自视觉传感器收集到的车道线、交通、行人等信息,将这些信号与已知的物体进行匹配再最终作出决策。
他同样对比了激光雷达(Lidar)方案和计算机视觉方案的优劣,他和马斯克一样是计算机视觉派:“某种意义上,Lidar 是一个捷径。它回避了对自动驾驶非常重要的视觉识别基本问题,给人一种虚假的技术进步了的感觉”。他表示,和 Lidar 相比,特斯拉更加依赖计算机视觉,并将收到的视觉信息进行 3D 渲染,涵盖视频输入到深度神经网络。
Andrej Karpathy 在现场演讲展示了早期将神经网络部署在真实世界中训练的重要性,比如说,特斯拉的每一位司机其实都参与到了神经网络的训练中,每一个新手都将为特斯拉的自动驾驶系统喂入新的数据。而且,Karpathy 认为,在神经网络的训练中,和数据的规模相比,数据的质量更加重要,特斯拉的原始数据集也可能是全球最有价值的,因为特斯拉拥有全球范围的车队,可以提供各种环境、天气条件的数据,还会收集车辆的异常道路表现数据。在数据的标注上,特斯拉也正在尝试自动化标注的方向。
也就是说,特斯拉认为,摄像头+数据+神经网络+自研的自动驾驶芯片,足以保障基于计算机视觉的自动驾驶方案的安全性。
不过,目前大多数的自动驾驶技术厂商还是采用 Lidar +计算机视觉,或者融合毫米波雷达的方案,因为目前单纯依赖计算机视觉方案在安全性的保障上仍有一定风险。
编辑:芯智讯-林子