我们什么时候能摆脱笨重的 VR 头显呢?
自从去年马克 · 扎克伯格宣布将全力开发「元宇宙」之后,VR、AR 等技术就在世界范围内掀起了新一轮的热潮。
这些技术为计算机图形应用等领域提供了前所未有的用户体验。然而,时至今日,VR 头显的笨重依然是一个绕不开的问题,同时也阻碍了 VR 走进大众的日常生活。
这一问题源于 VR 显示光学的放大原理,即通过透镜将小型微显示器的图像放大。这种设计要求微显示器和镜片之间有一段相对较大的距离,因此当前的 VR 头显普遍比较笨重,佩戴起来很不舒服。
为了缩短微显示器和镜片之间的距离,研究者们想了很多种方法,包括借助「Pancake」透镜或波导来折叠光路等。比如在基于 Pancake 技术方案的 VR 眼镜中,图像源发射光线进入半反半透的镜片之后,光线在镜片、相位延迟片以及反射式偏振片之间多次折返,最终从反射式偏振片射出,因此能有效地缩小产品体积。
传统菲涅尔透镜与新式 Pancake 透镜的对比。
最近两年,我们已经可以看到一些基于 Pancake 透镜的 VR 眼镜原型。但是,这些眼镜通常还需要在微显示器和镜片之间留出一些距离,而且要么只能为每只眼睛呈现 2D 图像(可能导致视觉不适),要么分辨率非常有限。
在最近的一篇 SIGGRAPH 2022 论文中,来自英伟达和斯坦福大学的研究者展示了一种新的基于 Pancake 透镜的 VR 眼镜——Holographic Glasses(全息眼镜)。它的厚度只有 2.5 毫米,重 60 克,可以向佩戴者的每只眼睛展示 2D 或 3D 图像。
研究者表示,他们的 Holographic Glasses 基于最近的一类想法——使用人工智能技术来提高图像质量,并加速计算机生成的全息图(computer-generated holograms,CGH)的计算速度。
技术细节
这个眼镜主要由三部分组成:一个虚拟全息显示部件、一个几何相位透镜(GP lens)和一个基于瞳孔复制的波导系统。
首先来看虚拟全息显示部件。在多数情况下,phase-only SLM(空间光调制器)会在设备前创建一个全息图。但其实,它也可以在设备后创建,这样一来,所有的部件都靠得更近了,系统体积大大缩小。
接下来是基于瞳孔复制的波导系统。研究者使用该系统代替分束器来进一步减小系统形状因子。相干光源耦合到波导中,并为 SLM 提供相干照明。他们使用市场上可以买到的用于流入光源的波导,这些光源会导致某些波长的光照不均匀,但这可以通过不同的分级设计最小化。
最后,研究者用几何相位透镜(GP lens)代替接目镜。几何相位透镜非常轻,但它仅在特定的输入光束偏振下作为正透镜工作,由于大多数 SLM 也在线性偏振输入光下工作,他们在 SLM 和几何相位透镜之间安装了一个波板。
通过将这些部件组装在一起,研究者做出了 Holographic Glasses。
Holographic Glasses 的显示特性在很大程度上取决于 SLM 和接目镜。SLM 尺寸越大,视场(FOV,定义了在水平、垂直和对角线方向上的可视范围)越大;SLM 像素间距越小,eye box(近眼显示光学模组与眼球之间的一块锥形区域,也是显示内容最清晰的区域)越大。
Holographic Glasses 还有两个不同于传统 VR 眼镜的特性。
第一个特性是高衍射级(HDOs)。优秀像素的周期性结构产生了重复的高衍射级,并且由于接目镜的作用,它们沿着瞳孔平面收敛。如果高衍射级的间隔小于瞳孔直径,那么用 HOGD 算法进行相位计算时就必须考虑高衍射级。
瞳孔掩蔽项 M_p 将 HOGD 算法扩展为「瞳孔 HOGD(Pupil-HOGD)」算法。它使相位模式得到优化,同时考虑瞳孔滤波。
仿真结果表明,与双相位幅度编码(DPAC)随机梯度下降和传统的 HOGD 算法相比,瞳孔 HOGD 算法在所有瞳孔大小下的图像质量最好。
第二个特性是动态 eye box。
由于波导被设计用来再现具有一定范围的瞬时光角的光场,所以整个 SLM 照明的方向可以由输入光束的方向控制。有了额外的栅极跟踪器,系统可以跟随注视,并通过简单地改变输入光束的方向来围绕视点移动。
研究者实现了两种形态的原型机:台式和可穿戴式。二者之间的唯一区别是可穿戴式使用了波导。
下图显示了台式原型机捕捉到的结果。放大后的细节显示,HOGD 算法呈现出了更高的图像质量和更高的对比度。
下面还有一个例子,红色箭头显示的是由于 GP 透镜缺失导致的 SLM 杂散光造成的伪影。
下图是用台式原型机捕获的多平面 3D 结果。结果显示,在不同的平面上对焦图像是正确的,可以诱发使用者的适应反射。
下图是可穿戴式原型机生成的结果:图像质量、对比度均较差,这主要是由于波导与实现的相干光源之间不匹配,可以通过不同的分级设计来改善。
局限性
从当前的技术介绍来看,这款 VR 眼镜还有一些局限。
第一个局限是 FOV。虽然这款眼镜的 FOV 有望超过当前这一代的 VR 头显,但现在我们能看到的这版只有 22.8°。
「这款 Holographic Glasses 的 FOV 比当前市场上可以买到的 VR/AR 头显都要小。但是,FOV 主要受 SLM 尺寸和 GP 透镜焦距的限制,二者都可以通过不同的部件加以改善。」研究者表示。
另一个局限是,这款眼镜可能需要非常精确地测量用户的瞳孔。如果没有经过精巧的设计,这是很难实现的。不过,研究人员指出,使用红外凝视跟踪器可以做到这一点,但你需要能够不断跟踪佩戴者的瞳孔大小,因为在使用眼镜时,它们会经常调整以适应不同的光线条件。
即便如此,这款 VR 眼镜还是有很多令人印象深刻的地方,不知道哪家公司会率先将其商业化。
更多细节请参见论文原文。
论文链接:https://d1qx31qr3h6wln.cloudfront.net/publications/Holographic_Glasses.pdf
参考链接:
https://d1qx31qr3h6wln.cloudfront.net/publications/Holographic_Glasses.pdf
https://minmin-tv-cp.com/researchers-find-way-to-shrink-a-vr-headset-down-to-normal-glasses-size/